IV Semester M.Sc. Degree Examination, June 2017
 (RNS Scheme) (Repeaters)
 MATHEMATICS
 M-403(A) : Graph Theory

Time: 3 Hours
Max. Marks : 80
Instructions: 1) Answerany fivequestion.
2) Each question carry equal marks.

1. a) Define:
i) Vertex connectivity
ii) Edge connectivity of a graph G.

Show that $\lambda\left(K_{n}\right)=n-1$.
b) For a cubic graph G, prove that $K(G)=\lambda(G)$.
c) Define n -connected graph. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is a n -connected graph, then prove that $\mathrm{q} \geq\left[\frac{\mathrm{pn}}{2}\right]$.
2. a) Let G be a planar graph with p-vertices, q-edges, r-regions and k-components. Then prove that $\mathrm{p}-\mathrm{q}+\mathrm{r}=\mathrm{k}+1$.
b) Show that there are only five regular polyhedra. 7
c) Prove that K_{5} and $K_{3,3}$ are non-planar.
3. a) Define outer planar graph. Prove that every maximal outer planar graph G with p-points has
i) $2 p-3$ edges
ii) atleast 3 points of degree not exceeding 3 .
b) If G is a maximal planar (p, q) graph with $p \geq 3$, then prove that $q=3 p-6$. 6
c) Define crossing number of a graph. Determine the crossing number of K_{6}.
4. a) Prove that for any graph $\mathrm{G}, \frac{\mathrm{p}^{2}}{\mathrm{p}^{2}-2 \mathrm{q}} \leq \chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$.
b) Prove that for any graph G , the sum and product $\chi(\mathrm{G})$ and $\chi(\overline{\mathrm{G}})$ satisfy the inequalities.
i) $2(\mathrm{p})^{1 / 2} \leq \chi(\mathrm{G})+\chi(\overline{\mathrm{G}}) \leq \mathrm{p}+1$
ii) $\mathrm{p} \leq \chi(\mathrm{G}) \chi(\overline{\mathrm{G}})<\left(\frac{\mathrm{p}+1}{2}\right)^{2}$.
c) Write a short note on four color conjecture.
5. a) Show that for any graph G with p-vertices is a tree if and only if $f(G, \lambda)=\lambda(\lambda-1)^{p-1}$. Also find $f\left(K_{p}, \lambda\right)$ and $f\left(\bar{K}_{p}, \lambda\right)$.
b) Show that every planar graph can be properly colored with five colors.
c) Define chromatic polynomial of a graph. Determine the chromatic polynomial of
i) K_{5}
ii) C_{9}
iii) $\mathrm{K}_{4,5}$.
6. a) Define:
i) Line graph
ii) Total graph
iii) Block graph with an example.

Further show that $K_{1,3}$ is not a line graph.
b) Draw all tournaments with four vertices.
c) Prove that every tournament has a spanning path.
7. a) Let X be the adjacency matrix of a simple graph G, then prove that the $(i, j)^{\text {th }}$ entry in X^{n} in the number of edge sequence of n-edges between the vertices V_{i} and V_{j}.
b) Let A be an incidence matrix of a disconnected graph with p -vertices and k-components. Then prove that the rank of A is $(p-k)$.
c) Let B and A be the circuit matrix and the incidence matrix, respectively, of a simple graph whose columns are arranged using the same order of edges, then prove that $A \cdot B^{\top}=B \cdot A^{\top} \equiv 0(\bmod 2)$.
8. a) Show that a dominating set D is a minimal dominating set if and only if each vertex $u \in d$ one of the following two conditions holds :
i) u is an isolated of D.
ii) There exists a vertex $v \in V-D$ for which $N(v) \cap D=\{u\}$.
b) Prove that for any graph G,
i) $\mathrm{p}-\mathrm{q} \leq \gamma(\mathrm{G}) \leq \mathrm{p}-\mathrm{B}_{0}(\mathrm{G})$
ii) $\left[\frac{\mathrm{p}}{\Delta+1}\right] \leq \gamma(\mathrm{G}) \leq \mathrm{p}-\Delta$.

