7

4

IV Semester M.Sc. Degree Examination, June 2017 (RNS Scheme) (Repeaters) **MATHEMATICS** M-403(A) : Graph Theory Time: 3 Hours

Instructions: 1) Answer any five question. 2) Each question carry equal marks.

- 1. a) Define:
 - i) Vertex connectivity
 - ii) Edge connectivity of a graph G.

6 b) For a cubic graph G, prove that $K(G) = \lambda(G)$. 6 c) Define n-connected graph. If G(p, q) is a n-connected graph, then prove that $q \ge \left\lceil \frac{pn}{2} \right\rceil$. 4 2. a) Let G be a planar graph with p-vertices, q-edges, r-regions and k-components. Then prove that p - q + r = k + 1. 5

- b) Show that there are only five regular polyhedra.
- c) Prove that K_5 and $K_{3,3}$ are non-planar.

3. a) Define outer planar graph. Prove that every maximal outer planar graph G with p-points has

i) 2p - 3 edges

ii) atleast 3 points of degree not exceeding 3.	5
b) If G is a maximal planar (p, q) graph with $p \ge 3$, then prove that $q = 3p - 6$.	6

c) Define crossing number of a graph. Determine the crossing number of K_6 . 5

PG - 625

Max. Marks: 80

Show that $\lambda(K_n) = n - 1$.

PG – 625

4. a) Prove that for any graph G, $\frac{p^2}{p^2 - 2q} \le \chi(G) \le \Delta(G) + 1$. **7**

b) Prove that for any graph G, the sum and product $\chi(G)$ and $\chi(\overline{G})$ satisfy the inequalities.

i)
$$2(p)^{\frac{1}{2}} \leq \chi(G) + \chi(\overline{G}) \leq p+1$$

ii) $p \leq \chi(G) \chi(\overline{G}) < \left(\frac{p+1}{2}\right)^2$. 7

- c) Write a short note on four color conjecture.
- 5. a) Show that for any graph G with p-vertices is a tree if and only if $f(G, \lambda) = \lambda(\lambda - 1)^{p-1}$. Also find $f(K_p, \lambda)$ and $f(\overline{K_p}, \lambda)$. 7
 - b) Show that every planar graph can be properly colored with five colors. 6
 - c) Define chromatic polynomial of a graph. Determine the chromatic polynomial of
 - i) K₅
 - ii) C₉

6. a) Define :

- i) Line graph
- ii) Total graph
- iii) Block graph with an example.

Further show that $K_{1,3}$ is not a line graph.

- b) Draw all tournaments with four vertices.
- c) Prove that every tournament has a spanning path.
- 7. a) Let X be the adjacency matrix of a simple graph G, then prove that the (i, j)th entry in Xⁿ in the number of edge sequence of n-edges between the vertices V_i and V_j .

2

3

8

4

4

5

-2-

- b) Let A be an incidence matrix of a disconnected graph with p-vertices and k-components. Then prove that the rank of A is (p - k).
- c) Let B and A be the circuit matrix and the incidence matrix, respectively, of a simple graph whose columns are arranged using the same order of edges, then prove that $A \cdot B^T = B \cdot A^T \equiv 0 \pmod{2}$.
- 8. a) Show that a dominating set D is a minimal dominating set if and only if each vertex $u \in d$ one of the following two conditions holds :
 - i) u is an isolated of D.
 - ii) There exists a vertex $v \in V D$ for which $N(v) \cap D = \{u\}$. 8
 - b) Prove that for any graph G,

i)
$$p - q \le \gamma(G) \le p - B_0(G)$$

ii)
$$\left[\frac{p}{\Delta+1}\right] \leq \gamma(G) \leq p - \Delta$$
. 8

5

6